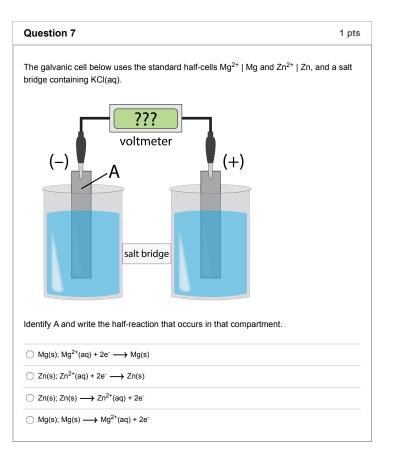
What is the E°_{cell} for $Zn(s) \mid Zn^{2+}(aq) \mid Ce^{4+}(aq) \mid Ce^{3+}(aq)$ $Zn^{2+} + 2e^{-} \longrightarrow Zn$ $E^{\circ} = -0.76$ $Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$ $E^{\circ} = +1.61$	ots
$Zn(s) \mid Zn^{2+}(aq) \mid Ce^{4+}(aq) \mid Ce^{3+}(aq)$ $Zn^{2+} + 2e^{-} \longrightarrow Zn$ $E^{\circ} = -0.76$	
$Zn^{2^+} + 2e^- \longrightarrow Zn$ $E^\circ = -0.76$	
$Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$ $E^{\circ} = +1.61$	
○ -2.37 V	
○ 1.61 V	
○ 2.37 V	
○ 0.85 V	


Question 2	1 pts
Standard reduction potentials are established by comparison to the potential of whalf-reaction?	nich
$\bigcirc 2H^{+} + 2e^{-} \longrightarrow H_{2}$	
○ 2H ₂ O + 2e ⁻ → H ₂ + 2OH ⁻	
○ Li* + e* → Li	
○ F ₂ + 2e ⁻ → 2F ⁻	

Question 3		1 pts
What is the standard these half-reactions?	cell potential of the strongest battery that could be made usin	g
Br ₂ + 2e ⁻ → 2Br ⁻	E° = +1.07	
Fe ³⁺ + 3e ⁻ → Fe	E° = -0.04	
$Co^{3+} + e^{-} \longrightarrow Co^{2+}$	E° = +1.80	
$Zn^{2+} + 2e^{-} \longrightarrow Zn$	E° = -0.76	
<u> </u>		
O 1.84		
O 2.56		
<u>-2.56</u>		

Question 4		1 pts
What would be the E° of an electro	lytic cell made from the half-reactions below?	
$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$	E° = +0.22 V	
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	E° = -1.66 V	
<u> </u>		
O -1.44		
<u>-1.88</u>		

uestion 5	1 pts
dium is produced by the electrolysis of molten sodium chloride. What are the anode and cathode, respectively?	e products
Cl ₂ (g) and Na ₂ O(I)	
Cl ₂ (g) and Na(I)	
Na(I) and O ₂ (g)	
O ₂ (g) and Na(I)	

Question 6	1 pts
The electrolysis of an aqueous sodium chloride solution using inert electrodes proc gaseous chlorine at one electrode. At the other electrode gaseous hydrogen is pro and the solution becomes basic around the electrode. What is the equation for the cathode half-reaction in the electrolytic cell?	duced
○ 2H ₂ O + 2e ⁻ → H ₂ + 2OH ⁻	
○ 2Cl ⁻ → Cl ₂ + 2e ⁻	
○ H ₂ + 20H ⁻ → 2H ₂ O + 2e ⁻	
$\bigcirc Cl_2 + 2e^- \longrightarrow 2Cl^-$	

Question 8	1 pts	Question 12 1 pts
Refer to the diagram in question 7. What happens to the size of the electrode A d the operation of the cell?	uring	How long will it take to deposit 0.00235 moles of gold by the electrolysis of KAuCl ₄ (aq) using a current of 0.214 amperes?
it decreases		○ 106 min
it doesn't change		○ 70.7 min
There is no way to tell.		
it increases		○ 26.5 min
Question 9	1 pts	Question 13 1 pts
Refer to the diagram in question 7. What should the voltmeter read?		Consider 3 electrolysis experiments:
		1. One Faraday of electricity is passed through a solution of AgNO ₃ .
○ +3.40 V		2. Two Faradays of electricity are passed through a solution of Zn(NO ₃) ₂ .
○ +4.30 V		3. Three Faradays of electricity are passed through a solution of Bi(NO ₃) ₃ .
O +1.60 V		Which of the following statements is true?
○ +2.50 V		The reaction producing the smallest mass of metal is that of the silver solution.
		Equal numbers of moles of all three metals are produced.
Question 10	1 pts	Twice as many moles of metallic zinc are produced than metallic silver.
How many moles of $\operatorname{Cl}_2(g)$ are produced by the electrolysis of concentrated sodiu chloride if 2.00 A are passed through the solution for 4.00 hours? The equation fo process (the "chloralkali" process) is given below.		Equal masses of all three metals are produced.
$2NaCI(aq) + 2H_2O(I) \longrightarrow 2NaOH(aq) + H_2(g) + CI_2(g)$		Question 14 1 pts
0.0745 mol		What is ∆ <i>G</i> ^o for the half-reaction below?
○ 0.149 mol		$CIO_3^- + 6H^+(aq) \longrightarrow 0.5CI_2(g) + 3H_2O(I)$ $E^{\circ} = +1.47$
0.298 mol		709,000 kJ/mol
0.00248 mol		
		194 kJ/mol
Question 11	1 pts	○ 194,000 kJ/mol
A steel surface has been electroplated with 5.10g of vanadium (V, molar mass = 5 g/mol). If 2.90x10 ⁴ C of charge were used, what was the original oxidation number		Question 15 1 pts
<u></u> +4		For the reduction of Cu^{2+} by Zn, ΔG° = -212 kJ/mol and E° = +1.10 V. If the coefficients in the chemical equation for this reaction are multiplied by 2, ΔG° = -424 kJ/mol. Does this mean E° for the cell would be +2.20V?
○ +2 		
O +1		Not enough information is given.
		○ Yes.
		It is impossible to know without testing it empirically.
		○ No.

Question 16	1 pts
Consider the cell:	
Zn(s) Zn ²⁺ (aq) Fe ²⁺ (aq) Fe(s)	
f run at standard conditions, calculate the value of ΔG_{ren}° for the reaction that	occurs
when current is drawn from this cell.	
· 	
vhen current is drawn from this cell.	
vhen current is drawn from this cell.	

Question 17	1 pts
Calculate the cell potential for a cell based on the reaction below:	
Cu(s) + $2Ag^{+}(aq) \longrightarrow Cu^{2+}(aq) + 2Ag(s)$	
when the concentrations are as follows:	
$[Ag^+] = 0.7 \text{ M}$	
$[Cu^{2+}] = 0.9 M$	
(The temperature is 25°C and E° = 0.4624 V.)	
○ 0.459 V	
○ 0.455 V	
○ 0.470 V	
○ 0.447 V	

Question 18	1 pts
Consider the cell:	
$Pb(s) \mid PbSO_4(s) \mid SO_4^{2-}(aq, 0.60 \text{ M}) \mid H^+(aq, 0.70 \text{ M}) \mid H_2(g, 192.5 \text{ kPa}) \mid Pt$	
If E° for the cell is 0.36 V at 25°C, write the Nernst equation for the cell at this temperature.	
$\bigcirc E = 0.36 - 0.01285 \cdot \ln \frac{192.5}{(0.70)^2(0.60)}$	
$\bigcirc \ E = \ 0.36 - 0.01285 \cdot \ln rac{1.90}{(0.70)(0.60)}$	
$\bigcirc \ E = \ 0.36 - 0.01285 \cdot \ln rac{1.90}{(0.70)^2(0.60)}$	
$\bigcirc \ E = 0.36 - 0.02569 \cdot \ln rac{192.5}{(0.70)^2(0.60)}$	

Question 19	1 pts
A concentration cell consists of the same redox couples at the anode are and different concentrations of the ions in the respective compartments unknown concentration for the following cell:	
$Pb(s) Pb^{2+}(aq, ?) Pb^{2+}(aq, 0.1 M) Pb(s)$ E = 0.065 V	
○ 6.35 x 10 ⁻⁴ M	
○ 6.35 x 10 ⁻⁴ M ○ 1.26 M	

Question 20		1 pts
What is the rati	o of $[Co^{2+}]$ / $[Ni^{2+}]$ when a battery built from the two half-reactions be trium?	elow
$Ni^{2+} \longrightarrow Ni$	E° = -0.25 V	
$Co^{2+} \longrightarrow Co$	E° = -0.28 V	
O 10.33		
O.10		
3.20		
0.31		

Question 21	1 pts
If E° for the disproportionation of $Cu^+(aq)$ to $Cu^{2+}(aq)$ and $Cu(s)$ is +0.37 V a calculate the equilibrium constant for the reaction.	t 25°C,
○ 2.4 x 10 ²	
○ 1.8 x 10 ⁶	
○ 1.3 x 10 ³	
○ 3.2 x 10 ¹²	

Question 22	1 pts
The standard potential of the cell:	
Pb(s) PbSO ₄ (s) SO ₄ ²⁻ (aq) Pb ²⁺ (aq) Pb(s)	
is +0.23 V at 25°C. Calculate the equilibrium constant for the reaction of 1 M Pb $^{2+}$ (with 1 M SO $_4$ ²⁻ (aq).	aq)
○ 7.7 x 10³	
○ 8.0 x 10 ¹⁷	
○ 6.0 x 10 ⁷	
○ 1.7 x 10 ⁻⁸	

Question 23	1 pts	Question 26 1 pts
The standard voltage of the cell:		Which of the following batteries are rechargeable?
$Ag(s) \mid AgBr(s) \mid Br(aq) \mid \mid Ag^{+}(aq) \mid Ag(s)$		I. Alkaline Battery
is +0.73 V at 25 $^{\circ}\text{C}$. Calculate the equilibrium constant for the cell reaction.		II. NiMH Battery
○ 5.1 x 10 ¹⁴		III. Lithium Battery
4.6 x 10 ⁻¹³		IV. Lithium Ion Battery
2.0 x 10 ⁻¹⁵		V. Lead-Acid Battery
2.2 x 10 ¹²		◯ II and V only
2.2 × 10		○ II, IV, and V only
		O I and III only
Question 24	1 pts	○ All except I
The equilibrium constant for the reaction below:		
$2Hg(I) + 2CI^{-}(aq) + Ni^{2+}(aq) \longrightarrow Ni(s) + Hg_2CI_2(s)$		0 0
is $5.6x10^{-20}$ at 25° C. Calculate the value of $E^{\circ}_{\ cell}$ for this reaction.		Question 27 1 pts
0.000		Here is the discharge reaction for an alkaline battery:
○ +0.57 V		$Zn(s) + 2MnO_2(s) + H_2O(I) \longrightarrow Zn(OH)_2(s) + Mn_2O_3(s)$
○ -1.14 V		Which species is reduced as the battery is discharged?
○ -0.57 V		
○ +1.14 V		○ MnO₂(s)
		○ Mn ₂ O ₃ (s)
		○ Zn(s)
Question 25	1 pts	○ H ₂ O(I)
You turn on a flashlight containing brand new NiCad batteries and keep it lit for a	minute	
or two. Which of the following can be considered TRUE regarding the chemical s		
these batteries?		Question 28 1 pts
I. ΔG for the battery reaction is negative.		What metal (in various oxidation states) is present at both the cathode and the anode in a
II. E _{cell} > 0		typical car battery?
III. The batteries are at equilibrium. IV. E _{cell} is substantially decreasing during this time.		0.000
iv. E _{cell} is substantially decreasing during this time.		○ cadmium
○ All but III	_	○ lead
○ III only		nickel
○ All but IV		○ zinc
○ All are true.		○ lithium
○ I and II only		

Question 29	1 pts
The net redox reaction in a fuel cell is given below: $2H_2 + O_2 \longrightarrow H_2O$ What is the reaction at the anode in a fuel cell?	
what is the reaction at the ahode in a fuel cen? $\bigcirc \ H_2 \longrightarrow 2H^+ + 2e^-$	
$\bigcirc H^+ + OH^- \longrightarrow H_2O$ $\bigcirc O_2 + 4e^- \longrightarrow 2O^{2-}$	
$\bigcirc O_2 \longrightarrow 2O^{2+} + 4e^-$	

Question 30	1 pts
Which of the following is NOT an important characteristic of the proton exchange membrane (PEM) in a PEM fuel cell?	
It is coated with catalysts that increase the rates of both the oxidation and reduction react	tions.
It must withstand the high operating temperatures of the fuel cell.	
It physically separates the half-reactions.	
It must be stable in an acidic environment.	
O It is permeable to protons.	